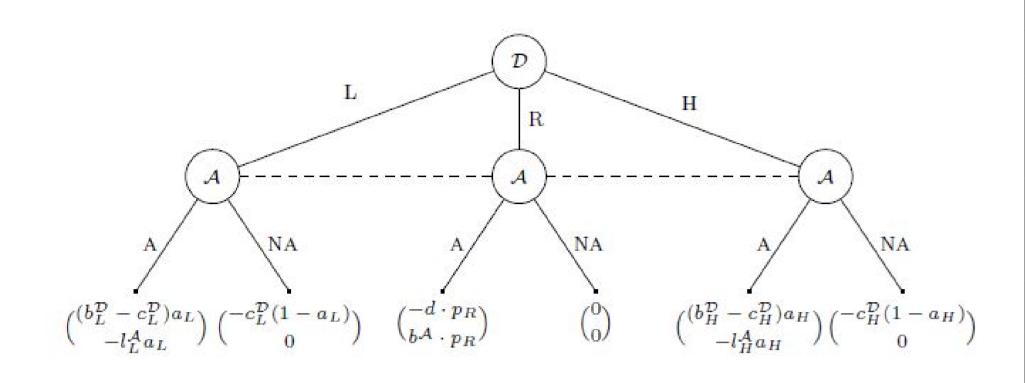
HONEYPOT TYPE SELECTION GAMES FOR SMART GRID NETWORKS



Nadia Boumkhled¹, Sakshyam Panda¹, Stefan Rass², Emmanouil Panaousis³

¹ University of Surrey ² Universität Klagenfurt ³ University of Greenwich

• Single-shot Bayesian game with complete but imperfect information.

• Defender decides to install a system with high-interaction honey-

Symbols	Condition/Range	Description
$b^{\mathcal{A}}$	$b^{\mathcal{A}} > 0$	Attacker's benefit on attacking type-R system
$b_H^{\mathcal{D}}$	$b_H^{\mathcal{D}} \ge c_H^{\mathcal{D}}$	Defender's benefit when type-H system attacked
$b_L^{\mathcal{D}}$	$c_L^{\mathcal{D}} \le b_L^{\mathcal{D}} < b_H^{\mathcal{D}}$	Defender's benefit when type-L system attacked
$c_{H}^{\mathcal{D}}$	$c_H^{\mathcal{D}} > 0$	Cost of running type-H system
$c_L^{\mathcal{D}}$	$0 < c_L^{\mathcal{D}} < c_H^{\mathcal{D}}$	Cost of running type-L system
d	$d > b_H^{\mathcal{D}}$	Defender's loss when type-R system attacked
$l_{H}^{\mathcal{A}}$	$l_H^{\mathcal{A}} > 0$	Attacker's loss on attacking type-H system
$l_L^{\mathcal{A}}$	$0 < l_L^{\mathcal{A}} < l_H^{\mathcal{A}}$	Attacker's loss on attacking type-L system

UNIVERSITY OF

SOLUTION: BAYESIAN EQUILIBRIA

- pot (H), or low-interaction honeypot (L), or no honeypot (R); with each having its costs and benefits.
- Attacker deciding whether to attack a target in the presence of information asymmetry.
- motivated from [1] and [3] \longrightarrow refined strategies to include L, H and R rather than just honeypot and normal system.

NOVELTY

L, H and R has efficacy $(a_L < a_H < p_R)$ which reflects a system's probability of being recognised as a real system during reconnaissance.

Assumptions and Payoffs

- type-L and type-H systems have additional costs and benefits to type-R system.
- The aggregated cost includes the deployment, maintenance and operational costs of having a honeypot in the network.
- type-H system \longrightarrow higher threat intelligence but expensive.
- Attacker, similar to the defender, has loss and benefits $(b^{\mathcal{A}} > -l_{L}^{\mathcal{A}} >$ $-l_{H}^{\mathcal{A}}$) based on her choice of action.

	$\mathcal{U}^{\mathcal{D}}(L, NA) < \mathcal{U}^{\mathcal{D}}(H, NA)$	$\mathcal{U}^{\mathcal{D}}(L, NA) \ge \mathcal{U}^{\mathcal{D}}(H, NA)$
		$(L,A; p_1 \ge \overline{p_1})$
$\mathcal{U}^{\mathcal{D}}(L,A) \le \mathcal{U}^{\mathcal{D}}(H,A)$	$(H, A; p_2 \ge \overline{p_2})$	$(R, NA; p_1 < \overline{p_1})$
	$(R, NA; p_2 < \overline{p_2})$	$(H, A; p_2 \ge \overline{p_2})$
		$(R, NA; p_2 < \overline{p_2})$
	$(L,A; p_1 \ge \overline{p_1})$	
$\mathcal{U}^{\mathcal{D}}(L,A) > \mathcal{U}^{\mathcal{D}}(H,A)$	$(R, NA; p_1 < \overline{p_1})$	$(L, A; p_1 \ge \overline{p_1})$
	$(H, A; p_2 \ge \overline{p_2})$	$(R, NA; p_1 < \overline{p_1})$
	$(R, NA; p_2 < \overline{p_2})$	
7 4	7 4	

where
$$\overline{p_1} = \frac{a_L \cdot l_L^A}{p_R \cdot b^A + a_L \cdot l_L^A}$$
 and $\overline{p_2} = \frac{a_H \cdot l_H^A}{p_R \cdot b^A + a_H \cdot l_H^A}$

Remarks and Outlook

- Game-theoretic approach gives better payoff than randomly choosing system type to implement.
- Our first step towards implementing game-theoretic strategies in smart grid networks as a part of the H2020 SPEAR project.
- [2] considers a *decoy parameter* for honeypots which could be *con*ceived as the efficacy for each type of system in our model.
- Various extensions are possible:
 - -repeated game model with belief update schemes,

-model with sophisticated attacker (e.g., with anti-honeypot techniques [4]).

References

- [1] Thomas E Carroll and Daniel Grosu. A game theoretic investigation of deception in network security. Security and Communication Networks, 4(10):1162– 1172, 2011.
- [2] Yang Li, Leyi Shi, and Haijie Feng. A game-theoretic analysis for distributed honeypots. *Future Internet*, 11(3):65, 2019.
- [3] Jeffrey Pawlick and Quanyan Zhu. Deception by design: evidence-based signaling games for network defense. arXiv preprint arXiv:1503.05458, 2015.
- [4] Kun Wang, Miao Du, Sabita Maharjan, and Yanfei Sun. Strategic honeypot game model for distributed denial of service attacks in the smart grid. *IEEE* Transactions on Smart Grid, 8(5):2474–2482, 2017.